Periods of Morse–Smale diffeomorphisms on $${\mathbb {S}}^n$$, $${\mathbb {S}}^m \times {\mathbb {S}}^n$$, $${\mathbb {C}}{\mathbf{P }}^n$$ and $${\mathbb {H}}{\mathbf{P }}^n$$

نویسندگان

چکیده

We study the set of periods Morse–Smale diffeomorphisms on n-dimensional sphere $${\mathbb {S}}^n$$ , products two spheres arbitrary dimension {S}}^m \times {\mathbb with $$m \ne n$$ complex projective space {C}}{\mathbf{P }}^n$$ and quaternion {H}}{\mathbf{P . classify minimal sets Lefschetz for such diffeomorphisms. This characterization is done using induced maps homology. The main tool used zeta function.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutativity degree of $mathbb{Z}_p$≀$mathbb{Z}_{p^n}

For a nite group G the commutativity degree denote by d(G) and dend:$$d(G) =frac{|{(x; y)|x, yin G,xy = yx}|}{|G|^2}.$$ In [2] authors found commutativity degree for some groups,in this paper we nd commutativity degree for a class of groups that have high nilpontencies.

متن کامل

Self-Dual Codes over $\mathbb{Z}_2\times (\mathbb{Z}_2+u\mathbb{Z}_2)$

In this paper, we study self-dual codes over Z2× (Z2+uZ2), where u 2 = 0. Three types of self-dual codes are defined. For each type, the possible values α, β such that there exists a code C ⊆ Z2×(Z2+uZ2) β are established. We also present several approaches to construct self-dual codes over Z2 × (Z2 + uZ2). Moreover, the structure of two-weight self-dual codes is completely obtained for α · β 6...

متن کامل

Constacyclic codes of length $p^sn$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$

Let Fpm be a finite field of cardinality p m and R = Fpm[u]/〈u 〉 = Fpm +uFpm (u = 0), where p is a prime and m is a positive integer. For any λ ∈ Fpm, an explicit representation for all distinct λ-constacyclic codes over R of length pn is given by a canonical form decomposition for each code, where s and n are positive integers satisfying gcd(p, n) = 1. For any such code, using its canonical fo...

متن کامل

$\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})$-Linear Skew Constacyclic Codes

In this paper, we study skew constacyclic codes over the ring ZqR where R = Zq + uZq, q = p s for a prime p and u2 = 0. We give the definition of these codes as subsets of the ring ZqR . Some structural properties of the skew polynomial ring R[x, θ] are discussed, where θ is an automorphism of R. We describe the generator polynomials of skew constacyclic codes over R and ZqR. Using Gray images ...

متن کامل

On Codes over $\mathbb{F}_{q}+v\mathbb{F}_{q}+v^{2}\mathbb{F}_{q}$

In this paper we investigate linear codes with complementary dual (LCD) codes and formally self-dual codes over the ring $R=\F_{q}+v\F_{q}+v^{2}\F_{q}$, where $v^{3}=v$, for $q$ odd. We give conditions on the existence of LCD codes and present construction of formally self-dual codes over $R$. Further, we give bounds on the minimum distance of LCD codes over $\F_q$ and extend these to codes ove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fixed Point Theory and Applications

سال: 2021

ISSN: ['1661-7746', '1661-7738']

DOI: https://doi.org/10.1007/s11784-021-00918-5